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ABSTRACT 

We investigate stochastic house price returns, interest rates and mortality rates in the 

pricing of no-negative-equity guarantees (NNEGs) with the aim of identifying the risks 

involved in equity-release products, placing particular focus on the jump effect on house 

price returns. We propose an ARMA-GARCH jump model based on UK house returns 

data with significant jump persistence, autocorrelation and volatility clustering. Interest 

rate and mortality rate dynamics are respectively assumed to follow the CIR model (Cox et 

al. 1985) and the CBD model (Cairns et al. 2006) with the risk-neutral valuation 

framework for NNEG pricing being derived using the conditional Esscher transform 

technique (Bühlmann et al. 1996). Our numerical analyses reveal that the jump effect on 

house price returns, interest-rate risk and mortality-rate risk can affect the costs of NNEGs, 

with the impact being as significant as that for interest-rate risk. We also identify the 

model risk in the pricing of NNEGs by comparing various house price return models, 

including the Black-Scholes, Merton Jump, ARMA-GARCH, ARMA-EGARCH, Double 

Exponential Jump Diffusion and ARMA-GARCH Jump models.  
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Introduction 
The continuing global increase in life expectancy demands urgent consideration 

of the ways in which the retirement incomes of the elderly can be increased in order to 

ensure the maintenance of an acceptable standard of living. Although pension systems 

have long been the primary financial resource for elderly people, aging populations 

and increases in longevity on a global scale have put pension and annuity providers in 

untenable positions, such that the response by many providers has been unavoidable 

reductions in pension benefits (Antolin, 2007). About 75 per cent of the increasingly 

elderly populations around the world are now considered to have inadequate income 

upon their retirement; thus, governments are faced with the growing challenge of 

financing such aging populations. Clearly, therefore, development within the private 

markets of innovative financial products capable of increasing retirement income 

would be of significant benefit.  

Many elderly people are considered to be “cash poor and equity rich” 

(McCarthy, et al. 2002; Rowlingson, 2006; Shan, 2011). In the UK, for example, the 

aggregate non-mortgaged equity owned by people over the age of 65 years was 

found to be £1,100 billion, whilst in the US, the median value of mortgage-free 

homes in the early part of the new century was found to be US$127,959, with more 

than 12.5 million elderly people having absolutely no mortgage debt (American 

Housing Survey, 2005). Home equity therefore offers a potential alternative financial 

resource capable of meeting current shortfalls in retirement income; and indeed, 

equity-release products are designed exactly for this purpose, with homeowners 

receiving a lump sum and/or annuity in exchange for the transfer of some, or all, of 

the value of their house to a financial institution upon their death. The loan value is 

ultimately determined by the age of the borrower, the interest rate and the value of the 

property. Such equity-release products are available in several developed countries, 
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including the US, the UK, France, Australia, Canada and Japan, with the major 

advantage for homeowners being that they can receive cash without having to leave 

the property. Due to the trend of population aging, a number of studies have 

estimated the potential demand for equity-release products. For example, across 

Europe as a whole, the report by Towers Watson (2014) estimate that there is 

potential for over €20bn to be released from equity release products each year and 

over €20bn 10 years4.  

 Equity-release products are widely offered by financial institutions, such as 

banks or insurance companies, but of course, there are risks involved for such 

institutions providing these products. The most obvious of these risks is the negative 

equity that such institutions may have to assume if the proceeds from the sale of the 

house prove to be less than the loan value paid out. Equity-release mortgages differ 

from traditional mortgages, since the loans and accrued interest are required to be 

repaid when the borrower dies or leaves the house. Given that the main risk factors 

involved in such products are the mortality of the homeowners, the interest rate and 

the underlying value of the property, the management of these risks has become a 

crucial element for equity-release product providers in the continuing development 

of this market.  

 The use of insurance or the writing of no-negative-equity guarantees (NNEGs) 

are the main methods used to deal with the associated risks in equity-release products. 

The Home Equity Conversion Mortgage (HECM) program in the US5 is a typical 

example of the use of insurance, whereby a borrower pays an up-front fee of 2 per 

cent of the initial property value as the insurance fee, which then effectively protects 
                                                 
4 This estimate projected in 2030 is based on the following conservative assumptions: the elderly 
population in Europe is 124 million; the overall home ownership in the population is 71%; average 
house price is €210,000; a 22% loan-to value and annual sales of 1/2%; no inflation. 
5 The department of Housing and Urban Development (HUD) first introduced the HECM program in 
1989. 



 5 

the lenders against any losses arising if the loan balance exceeds the property value at 

the time of settlement. NNEGs are common practice within the UK, with such 

products protecting borrowers by capping the redemption amount of the mortgage at 

the lesser amount of the face value of the loan or the sale proceeds of the property; 

thus, NNEGs can be viewed as a European put option on the mortgaged property. 

Since the effective valuation of NNEGs has clearly become extremely important in 

developing an understanding of equity-release products, the primary aim of this study 

is to examine the risk factors involved in the pricing of NNEGs, taking into 

consideration house pricing, interest rates and mortality rates.  

 In the continuing development of the pricing of equity-release products, the 

primary concern, thus far, has been shown to be house price risk (Kau et al. 1995), 

with the assumption in a number of the prior studies being that house prices are 

driven by a Geometric Brownian Motion (GBM) for reverse mortgages, which 

thereby facilitates the application of the Black and Scholes (1973) option pricing 

formula to NNEG pricing. 6  Mortgage pricing models using the Black-Scholes 

approach have been introduced in several studies based upon the assumption that the 

house price process follows a standard stochastic process.7 Further assuming that the 

house price index follows a GBM for derivative contracts based on the credit loss of 

mortgage portfolios, Duarte and McManus (2011) found that loss-based indices 

provided a better means of hedging credit risk in mortgage portfolios than indices 

based on house prices. 

 There are numerous similar examples to be found in the real estate literature; 

however, in many of the empirical investigations, two important properties have been 

found to be associated with house price return dynamics. Firstly, the log-return of 

                                                 
6  See, for example, Szymanoski (1994) and Wang et al. (2007). 
7  Examples include Ambrose and Buttimer (2000), Bardhan et al. (2006) and Liao et al. (2008). 
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house prices is found to be autocorrelated, and secondly, the volatility of the log-return 

of house prices is found to be time-varying or volatility clustering. Li et al. (2010) and 

Chen et al. (2010) therefore turned to the use of ‘Autoregressive moving average - 

generalized autoregressive conditional heteroskedasticity’ (ARMA-GARCH) models 

as their approach to capturing house price dynamics in the UK equity-release market 

and the US HECM program. However, there must also be consideration of the fact 

that house price return dynamics have been subject to abnormal shocks over recent 

years, the most obvious example of which is the 2008 subprime mortgage crisis.  

The UK house price quarterly returns from 1952 to 2012, based upon the fourth 

quarter of each year, are illustrated in Figure 1, with these details being obtained from 

the Nationwide House Price Index (HPI). As we can see, housing prices are found to 

have changed more than 5 per cent in a given quarter no less than 24 times over the 

sample period, thereby revealing significant jump risk when the quarterly housing 

price is found to have changed by more than three standard deviations. The most 

significant downward jump occurred in 2008, following the outbreak of the 

subprime mortgage crisis. Given that the effects of such a downward jump are both 

systematic and non-diversifiable, this can lead to enormous problems within the 

general real estate market; thus, the jump effects in house prices have attracted 

considerable attention and related investigations over recent years. 

<Figure 1 is inserted about here> 

 Both Kau and Keenan (1996) and Chen et al. (2010) used the jump diffusion 

process to describe the changes in house prices, with the latter study demonstrating 

that abnormal shocks have significant impacts on mortgage insurance premiums. 

Chang et al. (2011) further extended the double exponential jump-diffusion model of 

Kou (2002) to consider the asymmetric jump risk in the pricing of mortgage 
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insurance. On other hand, Eraker (2004), Duan et al. (2006, 2007), Maheu and 

McMcurdy (2004) and Daal et al. (2007) find that accommodating for jumps effect 

in the log return and volatility considerably improves the model’s fit for the return 

data of equity markets. 

 Nevertheless, despite the jump risk having been taken into consideration in the 

modeling of house price dynamics in numerous prior studies, it appears that each of 

these studies has failed to consider the important properties of volatility persistence 

and autocorrelation in the log returns and allows time-variation in jump component 

of the log returns and volatility.8 We therefore aim to fill the gap within the extant 

literature by taking these factors into consideration. In specific terms, we study the 

jump dynamics in house price returns based upon an ARMA-GARCH specification 

which allows for both constant and dynamic jumps. Following Chan and Maheu 

(2002) and Maheu and McMcurdy (2004)9, we assume the distribution of jumps is 

to be Poisson with a time-varying conditional intensity parameter. In the empirical 

study, similar to the approach in Li et al. (2010), we focus on the UK equity-release 

market, using the Nationwide HPI to carry out our empirical analysis for the 
                                                 
8  Examples include Kau and Keenan (1996), Chen et al. (2010) and Chang et al. (2011). 
9 Chan and Maheu (2002), Eraker (2004), Maheu and McMcurdy (2004), Duan et al. (2006, 2007) 

and Daal et al. (2007) all consider the GARCH jump model for dealing with equity returns and find 

that accommodating for jumps effect in the log return and volatility considerably improves the 

model’s fit for the return data of equity markets. Among them, Eraker (2004) and Duan et al. (2006, 

2007), Chan and Maheu (2002), Maheu and McMcurdy (2004) and Daal et al. (2007) consider a 

dynamic jump setting. Duan et al. (2006) extended theory developed by Nelson (1990) and Duan 

(1997) by considering limiting models for the GARCH-jump process. In additional, Duan et al. (2007) 

provide empirical test of GARCH-jump model to price options, using data on S&P 500 index and the 

set of European options written on S&P 500 index. Further, Daal et al. (2007) proposed asymmetric 

GARCH-jump models that synthesize autoregressive jump intensities and volatility feedback in the 

jump component to fit for the dynamics of the equity returns in the US and emerging Asian stock 

markets. However, different to these literatures, we deal with house price return dynamics instead of 

equity returns. Thus, we further consider the ARMA-GARCH jump framework. 
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selection of the jump dynamic specifications based upon actual house price returns 

data. In order to facilitate our investigation of the jump effects in house price return 

modeling, we carry out a comparison between the fitting accuracy of the proposed 

ARMA-GARCH jump model and various other jump diffusion models, such as the 

Merton (1976) and Kou (2002) models, as well as the models proposed within the 

prior literature relating to NNEG pricing, such as the GBM, ARMA-GARCH and 

ARMA-EGARCH models. Our empirical analyses, based upon three different 

National HPI data periods, reveal that the ARMA-GARCH jump model with dynamic 

jump specifications provides the best fit, according to both log-likelihood and Akaike 

information criteria (AIC). The ARMA-GARCH dynamic jump model shows 

significant persistence in the conditional jump, which indicates that when designing 

equity-release products, we cannot ignore the jump risk associated with house price 

returns.  

 Interest-rate risk is another important risk factor in the analysis of NNEGs, 

since interest rates are a fundamental economic variable within any economy, and 

cannot be treated as constant, particularly when relating to economic policies with 

long horizons; thus, the incorporation of the feature of stochastic interest rates in the 

valuation of contingent claims has been proposed in numerous studies within the 

extant financial literature.10 It was also pointed out by Ho et al. (1997) that interest 

rate risk has become an increasingly important factor as a result of the term structure 

of interest rates affecting the value of options with long-term maturity. Kijima and 

Wong (2007) further considered the pricing of equity-indexed annuities with 

stochastic interest rates, noting their substantial effects on the valuing of insurance 

policies with long horizons. Since an NNEG is similar to writing a long-duration 

                                                 
10  Examples include Merton (1973), Rabinovitch (1989), Turnbull and Milne (1991) and Amin and 
Jarrow (1992). 
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European put option on the mortgaged property, the stochastic interest rate in the 

NNEG pricing framework cannot be ignored. We therefore employ the well-known 

CIR term structure model (Cox et al. 1985) to capture the interest rate dynamics in 

the pricing of NNEGs. 

  The mortality risk factor has recently been considered in NNEG pricing as a 

result of the global decline in human mortality in the twentieth century. Given the 

uncertainty over improvement trends in long-term mortality, longevity risk has 

become a serious threat to lenders, since it increases the payout period and the risks 

involved in issuing equity-release products. In order to reflect this longevity risk, we 

also consider a stochastic mortality model, employing the well-known CBD model 

(Carins et al. 2006) for the valuation of NNEGs.  

 We provide a general valuation model in this study which allows for three 

stochastic components in the pricing of NNEGs, contributing to the extant literature 

on equity-release products in the following four significant ways. Firstly, our 

general valuation framework considers not only house price return dynamics, but 

also interest rate and mortality rate dynamics; we are therefore able to undertake 

separate analyses of the impacts of these three risk factors on NNEG costs. Secondly, 

we derive our risk-neutral valuation framework with house price return dynamics 

based upon an ARMA-GARCH jump process using the conditional Esscher transform 

technique (Bühlmann et al., 1996). Thirdly, our study addresses the model risk in 

NNEG pricing by comparing the costs based on various house price return models. 

Finally, our numerical findings reveal that ignoring the jump, interest rate and 

longevity risks will ultimately result in the underpricing of NNEGs. 

 The remainder of this paper is organized as follows. We construct an ARMA- 

GARCH jump model in Section 2 and then carry out empirical analyses to investigate 
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the jump effect in house price returns. This is followed in Section 3 by the derivation 

of a risk-neutral valuation framework for NNEG pricing under ARMA-GARCH jump 

models. A numerical investigation of the effects of jump, interest rate and longevity 

risks is subsequently carried out on NNEG costs in Section 4. Finally, the conclusions 

drawn from this study are presented in Section 5. 

Analysis of House Price Returns with Jumps  

The ARMA(s,m)-GARCH(p,q) Jump Model 

Analysis of the properties of volatility clustering and autocorrelation effects using 

house price return dynamics has already been undertaken by Chen, H. et al. (2010) 

and Li et al. (2010). We also consider the jump effect with house price return 

dynamics based upon an empirical investigation (see Figure 1); our analysis involves 

the construction of a house price return model capable of capturing the properties of 

volatility clustering and both jump and autocorrelation effects under Maheu and 

McCurdy (2004) framework.  

 We begin by investigating the house price returns data based upon time-series 

analysis, and then go on to develop the ARMA-GARCH jump model. Let 

( )( )0
; ; ; T

t t
P

=
Ω Φ Φ  be a complete probability space, where P is the data-generating 

probability measure, with specifications for the conditional mean and conditional 

variance. Let Ht denote the UK house price index and Yt represent the house price 

return at time t. Yt is defined as 
1

ln( )t

t

H
H −

 and the proposed ARMA-GARCH jump 

model governing the return process is then expressed as: 

                          
1

ln( ) ,t
t t t

t

HY
H

µ ε
−

= = +

                     

(1) 

The mean return follows an autoregressive moving average (ARMA) process as 
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1 1

,
s m

t i t i j t j
i j

u c Yϑ ζ ε− −
= =

= + +∑ ∑                 (2) 

where s is the order of the autocorrelation terms; m is the order of the moving 

average terms; ϑi is the ith-order autocorrelation coefficient; ζj is the jth-order moving 

average coefficient; εt is the total returns innovation observable at time t which is  

                              1, 2,t t tε ε ε= +                          (3) 

Extending from Maheu and McCurdy (2004)11, we set two stochastic innovations 

in which the first component ( )1,tε captures smoothly evolving changes in the 

conditional variance of returns and the second component ( )2,tε  causes infrequent 

large moves in returns and are denoted as jumps. 1,tε  is set as a mean-zero innovation 

( )1, 1| 0t tE ε − Φ =   with a normal stochastic forcing process as 

                         1, ,     (0,1),   t t t th z z NIDε = ∼                 (4) 

And ht denote the conditional variance of the innovations, given an information set 

of Φt–1, 

                        2

1 1
,

q p

t i t i j t j
i j

h w hα ε β− −
= =

= + +∑ ∑                   (5) 

where p is the order of the GARCH terms; q is the order of the ARCH term; αi is the 

ith-order ARCH coefficient; and βj is the jth-order GARCH coefficient. 1,tε  is 

contemporaneously independent of 2,tε . 2,tε  is a jump innovation that is also 

conditionally mean zero ( )2, 1| 0t tE ε − Φ =   and we describe 2,tε  in next 

subsection. 

                                                 
11 Maheu and McCurdy (2004) consider the jump setting under a constant conditional mean of 
GARCH model. We deal with a jump ARMA-GARCH model and the likelihood function for 
parameter estimation is reconstructed.  
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The Setting of Jump Dynamics 

To capture the jump risk, the second component of innovation is employed to reflect 

the large change in price and modeled as 

               ( ),
1

2, ,
2    ~              for 1, 2,,

Nt

t k
k

t t ktV V NID kfε fλ θ
=

= − =∑     (6) 

where Vt,k denotes the jump size for the kth jump with the jump size following the 

normal distribution with parameters, (φ , 2θ ) and Nt is the jump frequency from 

time t –1 to t, distributed as a Poisson process with a time-varying conditional 

intensity parameter (λt); that is: 

                 1
exp( )( | ) , 0,1, 2....

!

j
t t

t tP N j j
j
λ λ

−

−
= Φ = = ,

 
            (7) 

where the parameter λt represents the mean and variance for the Poisson random 

variable, also referred to as the conditional jump intensity.  

 To facilitate our investigation of the jump effect on house price returns, we 

extend the work of Chan and Maheu (2002), Maheu and McCurdy (2004) and Daal 

et al. (2007) to specify λt as an ARMA form, which is  

                        0 1 1t t tλ λ ρλ ςψ− −= + + ,                      (8) 

where ρ measures jumps persistence. Since the ς variable measures the sensitivity of 

the jump frequency (λt) to past shocks (ψt –1), with ψt –1 representing the unpredictable 

component affecting our inference on the conditional mean of the counting process, 

Nt –1 , then this suggests corresponding changes. We also investigate the constant 

jump effect, which represents a special case of Equation (8) with the restriction of 

constant jump intensity (λt = λ0); this is imposed by setting ρ = 0 and ς = 0.  

The conditional jump intensity in this model is time-varying, with an 

unconditional value under certain circumstances. In order to derive the unconditional 
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value of λt, we must first recognize that ψt is a martingale difference sequence with 

respect to Φt–1, because: 

                 [ ] [ ]1 1| | | 0t t t t t t t tE E E Nψ λ λ λ− − Φ = Φ Φ − = − =  ,      (9) 

Thus,  E[ψt] = 0  and  Cov (ψt, ψt –i) = 0,  i > 0.  

 Another way of interpreting this result is to note that, by definition, ψt is 

nothing more than the rational forecasting error associated with updating the 

information set; that is, ψt = E [Nt | Φt] – E[Nt | Φt–1]. There are several important 

features in the conditional intensity model as noted by Maheu and McCurdy (2004). 

First, if the conditional jump intensity is stationary, ( )1ρ < , then the unconditional 

jump intensity is equal to  

                             [ ] 0

1tE λλ
ρ

=
−

                        (10) 

Second, to forecast t iλ + , the multi-period forecasts of the expected number of future 

jumps are  

             [ ] ( )1 1
0

                                          0
|

1    1
t

t i t i i
t

i
E

i

λ
λ

λ ρ ρ ρ λ+ − −

=Φ =  + + + + ≥ 

           (11) 

Thus, the conditional jump intensity can be re-expressed as  

                   ( ) [ ]0 1 1 1|t t t tE Nλ λ ρ ς λ ς− − −= + − + Φ                (12) 

Because the jump intensity residual is defined as 

           [ ] ( )1 1 1 1 1 1 1
0

| |t t t t t t t
j

E N jP N jψ λ λ
∞

− − − − − − −
=

= Φ − = = Φ −∑          (13) 

where [ ]1 1|t tE N − −Φ  is our ex post assessment of the expected number of jumps 

that occurred form 2t −  to 1t − , and ( )1 1|t tP N j− −= Φ  is called the filter and is 

the ex post inference on 1tN −  give time 1t −  information.  
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Note that, a sufficient condition to ensure 0tλ ≥ , for all 1t > , is 

0 0,λ ρ ς> ≥ , and 0ς > . In addition, to forecast the conditional jump intensity, the 

startup value of 0λ  and 1ψ must be set. We follow Maheu and McCurdy (2004) to 

set 0λ as the unconditional value shown in equation (10), and 1 0ψ = . More details 

regarding the ARMA jump intensity can be referred to Maheu and McCurdy (2004). 

 

Parameter Estimation 

The parameters of the ARMA-GARCH jump model can be estimated using the 

maximum likelihood estimation (MLE) method. The construction of the likelihood 

function is described as follows. Let ( )nF Θ denote the log-likelihood function and 

Θ is the parameter set governing the ARMA-GARCH jump model, which implies 

( )1 2 3 21 0, , , , , , , , , , , ,, wC ϑ ϑ ϑ α β λ ρζ ς θζ φΘ =  We aim to find the optimal parameters 

( *Θ ) to maximize the log-likelihood function. The log-likelihood function can be 

expressed as 

                  ( ) ( )1
1

: log | ,
N

n t t
t

F f Y −
=

Θ = F Θ∑                  (14) 

The conditional on j jumps occurring the conditional density of returns is 

Gaussian, 

( ) ( )2

1 22

1| , , exp .
2( )2 ( )

t t t
t t t

tt

Y u j
f Y N j

h jh j

fλ f
θp θ

−

 − + −
= Φ Θ = × − 

 ++  
     (15) 

In Equation (14), the conditional density of return at time t ( ( )1| ,t tf Y −Φ Θ ) for 

calculating log-likelihood function can be obtained by integrating out the number of 

jumps as 
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22
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exp( )1                       exp .
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t t t t t t t
j

j
t t t t t

j tt

f Y f Y N j P N j

Y u j
h j jh j

fλ f λ λ
θp θ

∞

− − −
=

∞

=

Φ Θ = = Φ Θ = Φ Θ

 − + − −
= × − 

 ++  

∑

∑
(16) 

where the conditional density of Nt ( ( )1| ,t tP N j −= Φ Θ ) is shown in Equation (7). 

Since we assume the time-varying conditional intensity parameter (λt) follow an 

ARMA form as shown in Equation (8), we need to work out the past shock( 1tψ − ) 

that affects the inference on the conditional mean of the counting process first. 1tψ −  

is defined as 

                  
[ ]

( )

1 1 1 1

1 1 1
0

| ,

        = | ,

t t t t

t t t
j

E N

jP N j

ψ λ

λ

− − − −

∞

− − −
=

= Φ Θ −

= Φ Θ −∑
                (17) 

where [ ]1 1| ,t tE N − −Φ Θ  is given by Equation (13). This expression could be estimated 

if ( )1 1| ,t tP N j− −= Φ Θ  are known. Following Maheu and McCurdy (2004), the ex 

post probability of the occurrence of j jumps at time t-1 can be inferred using Bayes’ 

formula as follows. 

[ ] ( )

( )

1 1 1 1
0

1 1 2 1 2

0 1 2

2
1 1 11 1

22
1 11
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| , | ,
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t t t t
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t t tt t
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E N jP N j

f Y N j P N jj
f Y
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j h jh j

f Y

fλ fλ λ
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∞

− − − −
=

∞
− − − − −

= − −

∞
− − −− −

= −−

−

Φ Θ = = Φ Θ

= Φ Θ = Φ Θ
=

Φ Θ

 − + −−  × −
 ++  

Φ

∑

∑

∑

2 , )− Θ

   (18) 

 The details of Bayes’ inference on calculating [ ]1 1| ,t tE N − −Φ Θ  is presented in 

Maheu and McCurdy (2004) Thus, by iterating on (8), (16) and (18), we can 

construct the log-likelihood function and obtain the maximum likelihood estimators. 

In addition, Equations (16), (17) and (18) involves an infinite summation depending 
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on the jumps.12 We find that truncation of the infinite sum in the likelihood at 10 

captures all the tail probabilities and gleans sufficient precision in the estimation 

procedure.  

Empirical Analysis of Model Fit 

We examine the performance of the ARMA-GARCH jump model using time-series 

data from the Nationwide HPI, placing particular focus on an investigation into 

whether the conditional jump intensity is time-varying or constant. Our quarterly 

data period runs from the fourth quarter of 1952 to the fourth quarter of 2012, 

thereby providing a total of 241 quarterly observations. As a check for robustness, 

we also examine the results for different data periods (from the fourth quarters of 

1962 to 2012 and from the fourth quarters of 1972 to 2012). 

 The summary statistics on the levels and squares of the log-return series are 

reported in Table 1, from which there is clear evidence of time dependence using the 

modified Ljung-Box (LB) statistics (West and Cho, 1995). These statistics, which 

are reported for autocorrelations of up to 29 lags, are found to be robust to 

heteroskedasticity. The modified LB statistics show strong serial correlation in both 

the levels and the squares of the return series, a result which is consistent with those 

reported by Li et al. (2010), where the serial correlations in the Nationwide HPI 

returns were found to be significant.  

<Table 1 is inserted about here> 

 We investigate the jump dynamics for both dynamic and constant jump models, 

using ARMA(3,2)-GARCH(1,1) models, with the parameters of these two ARMA- 

GARCH jump models being estimated by maximizing the conditional log-likelihood 
                                                 
12 Equation (16), (17) and (18) involve an infinite sum over the possible number of jumps, tN . In 
practice, for our model estimated we found that the conditional Poisson distribution had zero 
probability in the tail for values of 10tN ≥  and the likelihood and the parameter estimates 
converge. 
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functions. The selection of the ARMA(3,2)-GARCH(1,1) models in the present 

study is based upon the Box-Jenkins approach.13 Details on the evaluation of our 

ARMA(3,2)-GARCH(1,1) jump models and the relevant parameter estimates are 

presented in Table 2.  

<Table 2 is inserted about here> 

 We evaluate the performance of the jump dynamics using log-likelihood, 

Akaike information criteria (AIC) and Bayesian information criteria (BIC).14 The 

log-likelihood and AIC results indicate that the ARMA-GARCH dynamic jump 

model provides a better fit, with the persistence parameter (ρ) in this model being 

found to be 0.6380, with statistical significance. This finding suggests that a high 

probability of many (few) jumps will also tend to be followed by a similarly high 

probability of many (few) jumps.  

 Nevertheless, when taking into account the number of parameters involved in 

the evaluation of the various models, the BIC results suggest that the constant jump 

model has slight superiority over the dynamic jump model. Recall that ψt is the 

measurable shock constructed by econometricians using the ex post filter; thus, in a 

correctly-specified model, ψt should not display any systematic behavior. 

 In order to facilitate a thorough investigation in the present study of the 

importance of the jump effect in the modeling of house price returns, the existing 

models proposed in Chen, H. et al. (2010) and Li et al. (2010) – which include the 

GBM, ARMA-GARCH and ARMA-EGARCH models – are also fitted to exactly 

the same series of Nationwide HPI returns. We further compare the performance of 

the ARMA-GARCH jump model with other jump diffusion models, such as the 

                                                 
13  Although not reported here, the parameter estimates of the models are available upon request. 
14  AIC = −2/obs. ln(likelihood) + 2/ obs. × (No. of parameters) (Akaike, 1973); BIC = −2/ obs. 
ln(likelihood) + ([No. of parameters] × ln[obs.]) / obs.; obs. is the sample size. 
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Merton (1976) and Kou (2002) models, both of which allow for jump effects, but do 

not consider the effects of autocorrelation and volatility persistence.  

 The fitting results are presented for each of the different models in Table 3.15  

Our empirical results indicate the superiority of the ARMA-GARCH jump model 

over the existing house price return models, with the ARMA-GARCH dynamic 

jump model demonstrating further improvements on each of the other models based 

upon the log-likelihood and AIC values.  

 Although the jump effect is taken into consideration in the jump diffusion 

models, such as those proposed by Merton (1976) and Kou (2002), the performance 

of their models is nevertheless found to be inferior to that of the time-series models 

within which the effects of autocorrelation and volatility clustering are also taken 

into consideration; it therefore seems clear that a house price return model capable 

of simultaneously taking into consideration all three properties would represent an 

important contribution to this particular field of research. 

<Table 3 is inserted about here> 

 As a check for the robustness of our results, we also investigate the model fit by 

considering different periods of the Nationwide HPI data. The results for the fourth 

quarters from 1962 to 2012 and quarters from 1972 to 2012 are shown in Table 4, 

For both sub-periods, the ARMA-GARCH dynamic jump model is still found to 

outperform each of the other models.  

<Tables 4 are inserted about here> 

 The results reported in Tables 3 to 4 confirm that the addition of jump dynamics 

improves the specification of the conditional distribution, as compared with the 

GBM, Merton jump, double exponential jump diffusion, ARMA-GARCH, ARMA- 

                                                 
15 The stochastic processes of these models are available upon request. 
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EGARCH and ARMA-GARCH constant jump models. In addition, the persistence 

parameter (ρ) governing the jump dynamic is statistically significant. It clearly 

indicates that jump risk in housing returns is significant and critical for pricing of 

NNEGs.16 

Valuation of NNEGs under House Price Return, Interest Rate and 

Mortality Dynamics 

The Payoff of NNEGs 

Given that, for some considerable time, it has been accepted market practice within 

the UK for all equity-release products to include the provision of a no- 

negative-equity guarantee (NNEG), the effective valuation of NNEGs has clearly 

become an extremely important issue. NNEGs protect borrowers by capping the 

redemption amount of the mortgage at the lesser of the face amount of the loan or 

the sale proceeds of the property; thus, the provision of an NNEG is similar in effect 

to the writing of a European put option on the mortgaged property.  

 Let us consider, as an example, a ‘roll-up’ mortgage.17 Let Kt denote the 

outstanding balance of the loan and Ht represent the value of the mortgaged property. 

The amount repayable (outstanding balance) at time T is the sum of the principal, K, 

plus the interest accrued at a roll-up rate18, vt; that is,  

                            
1

0

t T
tt

TK Ke ν
= −

=∑= ,                        (19) 

                                                 
16  The persistence parameter ( ρ  ) governing the jump model is estimated to be around 0.6380, 
with statistical significance. We didn’t report the entire parameter estimates here but they are 
available upon request. 
17  The most common types of payment options for equity-release products are lump sum (roll-up), 
terms, lines of credit, modified terms (combining lines of credit and term payments), tenure and 
modified tenure (combining lines of credit and tenure). Given that the roll-up mortgage has become the 
most popular payment option, our ongoing analysis focuses on this type of mortgage.  
18 The roll-up rate can be either fixed or floating. In addition, the initial principal is normally 
determined according to the value of the housing value. 
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At the time that the loan becomes repayable, time T, if Ht < Kt , then the 

borrower pays Ht, and if Ht > Kt ,then the borrower pays Kt. Once the loan is repaid, 

the provider receives an amount, Kt, plus the NNEG payoff, which is: 

                          [ ,0],t tMax K H− −                        (20) 

or exactly the payoff of a short position on a European put option with strike price 

Kt written on an underlying mortgaged property, Ht. Nevertheless, the valuation of 

an NNEG is more complex than the valuation of a European equity put option, 

essentially because the house price returns are highly autocorrelated, with significant 

heteroskedasticity and jump effects. Neither the Black-Scholes nor the Merton jump 

option pricing formulae are appropriate for the valuation of NNEGs since the former 

assumes that the returns of the underlying asset follow a GBM, whilst the latter 

assumes that they follow a mixed-jump process. Thus, following the validation of 

the jump risk for house price returns, we go on to construct a valuation framework 

for NNEGs based upon the specifications of an ARMA-GARCH jump model and 

take the interest rate and mortality risk into account simultaneously. 

The NNEG Valuation Framework 

Let V(0, s) denote the no-arbitrage value of the NNEG which is due at time s. 

The NNEG becomes due when the borrower dies. Thus, for a person aged x at 

inception, the expected cost of the NNEG, denoted as VNNEG(0,x), can be expressed 

as a series of European put options with different maturity dates. Under a discrete 

time steps, the fair value of the expected cost of a NNEG is calculated as 

            
1

0

(0, )(0, ) (0, ) (0, ) ,
x

NNEG
t

Q Q
s sV p V sx x q x

ω− −

=

= ∑
 
                 (21) 

where ω is the maximal age of the borrower; (0, )Q
s p x  is the projected probability 
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that a borrower aged x at inception will survive to age x + s and (0, )Q
sq x is the 

mortality that a borrower aged x at inception will die during the future time interval 

s to s+1 under the risk adjusted probability measure Q, or referring to as the 

risk-neutral measure.  

The no-arbitrage value of V(0, s) is calculated by discounting the payoff at time 

s under a risk-neutral measure Q, which is expressed as: 

              ( ) [ ]
0

(0, ) exp  ,0 .
sQ

t s sV s E r dt Max K H = − −  ∫            (22) 

where rt is the risk free interest rate at time t.  

To deal with the no-arbitrage value of (0, )V s , we need to obtain the 

risk-neutral process of the underlying housing price return under the 

ARMA-GARCH jump model. We use the conditional Esscher transform technique 

to derive the corresponding risk-neutral pricing. In addition, we cannot ignore the 

effect of interest rate and mortality risk in pricing NNEG because of the 

long-horizon feature of NNEGs; thus, we extend the existing literature on NNEG 

pricing to incorporate a stochastic interest rate and mortality rate assumption by 

employing the CIR interest rate model (Cox et al., 1985) and CBD mortality model 

(Cairns et al., 2006) . The corresponding process to obtain the risk-neural valuation 

will be given in next Section 

 

Risk-neutral Valuation  

House price return dynamic: an ARMA-GARCH jump model 

To price a NNEG, we derive the corresponding risk-neutral return dynamic 

under the proposed ARMA-GARCH jump model by employing the conditional 

Esscher transform technique (Bühlmann et al., 1996). This technique has been 
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widely used in the pricing of financial and insurance securities in an incomplete 

market since its introduction in 1932.19 Siu et al. (2004) use the conditional Esscher 

transform for pricing derivatives when the underlying asset returns were found to 

follow GARCH processes. Recently, such technique has been extended to deal with 

pricing reverse mortgage products (Li et al., 2010; Chen et al. , 2010; Yang, 2011; 

Lee et al., 2012). To introduce the conditional Esscher transform technique, we 

define a sequence { }| , 0,1, ,t
Tt j t j tΛ = ∆ = ∆

 be a tΦ - adapted stochastic 

process: 

                      ( )
( )

exp
exp |

T
t

T
t t t t t

aY
E aY=∆ −∆

Λ =
Φ  

∏                   (23) 

where tY  represents the house price return dynamic. The ARMA-GARCH jump 

model for capturing house price return under the real world measure can be referred to 

Equations (1)-(5). Bühlmann et al. (1996) has proved that ( ) 1TE Λ =  and 

( )|T t tE Λ Φ = Λ . Equivalently, { }tΛ is a martingale under P. We define a new 

martingale measure Q by 

                      | t T
dQ
dP

Φ = Λ                            (24) 

Then, under a risk neutral measure, Q, the housing price return dynamic then 

becomes 

                     *1ln( ) ,
2

Qt
t t t t t

t t

HY r t h
H

ε−∆
−∆

= = ∆ − +                  (25) 

with ( )2 2*
t t th h φ λθ+= +  and *Q

t t t ta hε ε= − . Q
tε  follows a normal distribution with 

mean 0 and variance *
th  under measure Q. In other words, the house price return 

dynamic under measure Q is similar to the form under measure P, albeit with shifted 
                                                 
19 See, for example, Gerber and Shiu (1994), Bühlmann et al. (1996), Siu et al. (2004), Li et al. (2010) 
and Chen et al. (2010). 
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parameters, that is.  * *
1

1| ~ ,
2t t t t t tY N r t h h− −∆

 Φ ∆ − 
 

. See Appendix for the derivation 

of the risk-neutral ARMA-GARCH jump model in Equation (25).  

 

Interest rate Dynamic: CIR model 

To model interest rate risk, we employ the well-known CIR interest rate model 

(Cox et al. 1985) which results in the introduction of a ‘square-root’ term in the 

diffusion coefficient of the interest rate dynamics proposed by Vasicek (1977). The 

CIR model has been a benchmark in modeling interest rates for many years, 

essentially because of its analytical tractability, as well as the fact that, contrary to 

the Vasicek (1977) model, the interest rate is always positive. Under the CIR model, 

we assume that the time-t short rate, rt , for a ( )( )0
; ; ; T

t t
P

=
Ω Φ Φ  is a complete 

probability space, governed by the following equation: 

                ,( )t r r t t r r tdr r dt r dWα µ σ= − +                  (26) 

where {Wr,t, t ≥ 0} is a standard Brownian Motion with parameters θr ≡ (αr , μr , σr ). 

The drift function αr (μr – rt ) is linear with mean reversion property; that is, the 

interest rate, rt, moves in the direction of its mean, μr, at speed αr. The diffusion 

function, rt σ r
2

 , is proportional to the interest rate, rt, which ensures that the process 

remains within a positive domain. Furthermore, if αr, μr and σr are all positive, and 

if 2αrμr  ≥ σ r
2 holds, then we can also assume that rt will remain positive.  

Under the risk-neutral probability measure, Q, the short rate defined in 

Equation (26) ensures that the discounted zero coupon bond price follows a 

martingale; that is: 

                ( ),
0, 0

exp
TT TQ Q

T s
T

P
P E E r ds

B
   = = −     

∫                 (27) 
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where Bt refers to the money market account at time t which satisfies: 

                           ( )0
exp .

t

t sB r ds= ∫                       (28) 

 According to the CIR model, a standard Brownian motion under the 

risk-neutral probability measure Q ( ,
Q

r tW ) can be specified as: 

                       , , ,r tQ
r t r t

r

r
dW dW dt

ϑ
σ

= +                      (29) 

where ϑr is the risk premium parameter. Consequently, the short rate at time t 

becomes: 

                  ( ) , ,Q Q Q
t t t r r t t r r tr r r t r Wα µ σ+∆ − = − ∆ + ∆                (30) 

where αr
Q
 = αr μr and μr

Q
 = αr + ϑr . We consider the correlation between the house 

price return and the short rate. Specifically, the correlation coefficient between 
*

Q
t

th
ε  

and ,
Q

r tW
t

 is equal to ,Y rr . To incorporating the correlation for simulating the future 

dynamics of house price return and short rate, we use the Cholesky Decomposition 

method 20 . In addition, we apply the MLE technique to the actual British 

zero-coupon bond data to calibrate the CIR model. The data covers the same period 

as the housing price data from Q4 1952 to Q4 2012 based on DataStream database. 

                                                 
20 We let a random vector ,  r tt

t

W
x

h t
ε 

=  
  

 and 
,Y rrΛ denote the correlation matrix as 

,

,

,

1
1Y r

r Y

Y r
r

r
r
 

Λ =  
 

. 

We can decompose 
,Y rrΛ as TLL , where L is the lower triangular matrix with real and positive 

diagonal entries as 
,

2
,

1 0

1
Y rY r

L
rr

 
=  

−  

. Finally, we can generate the new correlation random vector 

variable Z using the approach as 

,

2
,

1

,2

'
1

Y r

t

t

r tt

t
Y r

hZ
Z L x

WZ
h t

rr

ε

ε

 
 

   = = ∗ =     + − 
  

. The procedure is known as 

Cholesky Decomposition. 
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We make use of the zero-coupon bond with different time to maturities of 3-month, 

6-month, 1-year, 5-year and 10-year to calibrate the model. The procedure of 

calibrating the CIR model follows Rémillard (2013).21 

Due to we price the NNEG on a discrete time setup as shown in Equation (21), 

we extend the CIR model on a discrete basis. Following Lee et al.(2012), we assume 

that the short rate between t and t + Δt is fixed at rt , but still vary from one band to 

the next.  

 

Mortality Dynamic: CBD model 

To modeling mortality dynamics, as opposed to using the static mortality rate, 

we consider the longevity risk in NNEG pricing and employ the CBD model (Cairns 

et al, 2006) to project future mortality rates. The CBD model is attractive because it 

uses only a few parameters to obtain a good fit for the mortality probabilities of the 

elders; thus, this model has been widely adopted as a means of dealing with 

longevity risk for the elders (Wang et al., 2010, Yang, 2011). Since the reverse 

mortgage products are issued for the elders, we also adopt the CBD model. Under 

the CBD model, the mortality rate for a person aged x dying before x+1 valued in 

year t , denoted as q(t, x), is projected by: 

                    (1) (2)logit ( , ) ( ),t tq t x x xκ κ= + −                   (31) 

where the parameter (1)
tκ  represents the marginal effect of time on mortality rates; 

parameter (2)
tκ  refers to the old age effect on mortality rates; and x  is the mean 

age.22 With the estimated values of ( (1) (2),t tκ κ ), we can forecast the future mortality 

                                                 
21 Their code in Matlab function “ESTCIR” is available on the Rémillard’s website.  
http://www.brunoremillard.com/services.html 
22 We use the UK mortality data from 1950-2006 according to the human morality database (HMD) and 
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rates. In this study, we adopt Cairns et al. (2006)’s approach to estimate the 

parameters by using the least square method to fit the actual mortality curve and 

then project the ( (1) (2),t tκ κ ) based upon a two-dimensional random walk with drift: 

                         1 1t t tCZκ κ µ+ += + +                       (32) 

where 
'(1) (2),t t tκ κ κ =    and u is a constant 2 x  1 vector; C is a constant 2 x  2 upper 

triangular matrix; and Zt is a two-dimensional standard Gaussian process. 

Equation (32) describes the dynamics of the random walk process κt under the 

real world probability measure, P, for projecting the mortality rate shown in 

Equation (31). Let p(t, x) denote the projected one-year survival rate in year t based 

upon the CBD model, the projected probability in year t that a borrower aged x will 

survive to age x s+  is calculated by 

               ( , ) ( , ) ( 1, 1) ( , 1)s p t x p t x p t x p t s x s+ + + + −=  .     (33) 

To project the mortality rate under a risk-neutral probability measure Q,  

following Cairns et al. (2006), the dynamics become  

                     
( )
( )

1 1

1      

t t t m

t t

C Z

C Z

κ κ m λ

κ m

+ +

+

= + + −

= + +







                     (34) 

where mCmm  λ= − . 

 1tZ +


 in Equation (34) is a standard two-dimensional normal random variable 

under Q. The vector λ = (λm1, λm2) represents the market price of the longevity risk 

associated with the respective processes of Z1,t and Z2,t
 
. where λm1 is associated 

                                                                                                                                             
the data ages cover from age 60 to 100. Therefore, the mean age is 80 in our model calibration. 

. 
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with level shift in mortality and λm2 is associated with a tilt in morality. As in Cairns 

et al. (2006), we assume that the market price of risk λm is not updated over time; 

however, since there is no liquid market for systematic longevity risk, it is difficult 

to calibrate the risk-neutral survival probabilities using empirical data. Therefore, we 

follow the approach of Cairns et al. (2006) to carry out the calibrations as the 

parameter value of λm
 
= [0.175, 0.175]′ for the pricing of NNEGs in the present 

study. 

 

Costs of No-Negative-Equity Guarantees 

Example Setting and Assumptions 

In this section, we study the impacts of different risk factors on NNEG costs. The 

no-arbitrage value of NNEGs depends upon the dynamics of house price returns and 

the interest and mortality rates. Taking these risk dynamics into account increases the 

degree of difficulty of pricing the NNEG in Equation (21) analytically; instead, we use 

Monte Carlo simulations. Thus, we first generate 100,000 sample paths of the 

risk-neutral house price returns, interest rates and mortality rates according to 

Equations (25), (30) and (34) separately and then calculate the value of NNEG 

( (0, )NNEGV x )based on Equations (21) and (22). In addition, to implementing simulations, 

we assume that all deaths occur at midyear, and that δ is the average delay in the actual 

sale of the property in calculating the NNEG. 

 Regarding the mortgage product, we consider a floating roll-up mortgage which is 

the most popular equity-release product in the UK and the floating interest rate (vt) is 

set as being equal to the risk-free interest rate(rt) plus a constant spread (vr), that is, vt 
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= rt + vr .23 For a comparison purpose, we follow Li et al. (2010) to set up the relevant 

assumptions for the NNEG and list the information in Table 5. In addition, the 

parameter estimates for the housing price return for the ARMA-GARCH jump model 

can refer to Table 2 (in Section 2), and for the interest rate and mortality rate models 

are in Section 3 as shown in Table 6 and Figure 224. 

 

<Table 5 is inserted about here> 

<Table 6 is inserted about here> 

<Figure 2 is inserted about here> 

 

House Price Risk Effects 

Both the model risk and jump risk in house price dynamics are examined in this 

study by comparing the NNEG costs (reported in Table 7). Starting with our analysis 

of model risk, we calculate the NNEG costs under various house price return models, 

including the Black-Scholes, Merton jump diffusion, double exponential jump 

diffusion, ARMA-GARCH and ARMA-EGARCH models. The resultant NNEG 

values are expressed as a percentage of the total amount of cash advanced.  

<Table 7 is inserted about here> 

 The results reveal that the GBM assumption yields the lowest value for NNEG 

costs; thus, these costs would tend to be significantly underpriced if we were to ignore 

the important properties of autocorrelation, volatility clustering and jump effects in 

house price dynamics. Our empirical analysis in Section 2 has already demonstrated 

that jump risk cannot be ignored when modeling house price dynamics, and indeed, 

                                                 
23 A fixed roll-up mortgage was considered in Lee et al. (2012). 
24 To be consistent, we employ the three-month T-bill interest rates from Q4 1952 to Q4 2012 to 
estimate the parameters in CIR model.   



 29 

we find that taking the jump effect into account increases the overall costs of NNEGs, 

with the ARMA-GARCH dynamic jump model exhibiting the most significant effect 

amongst all of the house price return models examined in this study. 

Mortality Risk Effects  

The expected NNEG costs based upon the proposed ARMA-GARCH jump model for 

different gender and age groups are reported in Table 8; the results facilitate our 

investigation of the mortality risk effects. An increase in the age of borrowers leads to 

a reduction in NNEG costs, although the costs vary for borrowers of different gender; 

we surmise that the NNEG costs will be greater for female borrowers than male 

borrowers, essentially because females have a longer life expectancy.  

<Table 8 is inserted about here> 

 We also investigate the impact of longevity risk on NNEG pricing, and find 

that when such risk is taken into account, there is a slight increase in NNEG costs. 

For male borrowers at age 60, the cost as a proportion of the cash advanced 

increases from 5.12 per cent to 5.29 per cent under the ARMA-GARCH constant 

jump model, and from 5.19 per cent to 5.37 per cent under the ARMA-GARCH 

dynamic jump model. 

Interest Rate Risk Effects 

The results on the impact of interest rate risk are reported in Table 9, which shows that 

NNEG costs are increased by the stochastic interest rate. With all other parameters 

fixed, the NNEG rises from 5.80 per cent to 6.62 per cent for a female borrower, and 

from 4.50 per cent to 5.29 per cent for a male borrower, both at age 60. For older 

borrowers, interest rate risk has a less significant effect on NNEGs, since the 

implication is that contracts for older borrowers have shorter horizons. Clearly, 

lenders should be aware of this relationship when pricing NNEG contracts. 
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<Table 9 is inserted about here> 

 In summary, consideration of interest rates as a stochastic factor is important 

when assessing NNEG products, particularly floating roll-up mortgages; this finding 

is consistent with the prior literature on the pricing of derivatives and insurance 

contracts (Ho et al., 1997; Kijima and Wong, 2007).  

Comparison of Different Risk Factor Effects on NNEG Costs 

Finally, we compare the impacts on NNEG costs arising from the different jump risk 

factors involved in house price dynamics, interest rate risk and mortality risk. 

Separate analyses of the corresponding effects under ARMA-GARCH constant 

jump and ARMA-GARCH dynamic jump models are reported in Table 10, from 

which several interest findings arise.  

 Firstly, the impacts of the different risk factors on NNEG costs are consistent 

under both ARMA-GARCH constant jump and dynamic jump models, albeit in 

slightly differing degrees; for example, for a female borrower aged 60 under the 

ARMA-GARCH constant jump model, the impact on NNEG costs is found to be 

0.82 per cent for interest rate risk, 0.58 per cent for jump risk and 0.22 per cent for 

mortality risk. Based upon the same borrower under the ARMA-GARCH dynamic 

jump model, the impacts on the NNEG costs become 0.8 per cent for interest rate 

risk, 0.67 per cent for jump risk and 0.24 per cent for mortality risk. Secondly with 

an increase in the age of borrowers, there is a corresponding reduction in the impact 

of these three risk factors on NNEG costs;  

<Table 10 is inserted about here> 

 These findings clearly indicate that the greatest impact of NNEG costs stems 

from interest rate risk, as compared to jump risk.25 However, our earlier analysis in 

                                                 
25 Our analysis is based upon the jump model parameters. According to the empirical data, the jump 
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sub-section 4.1 indicated that the house price return model was the most significant 

factor determining NNEG costs. 

Conclusions 

In conjunction with the rapid growth in the equity-release market, there is growing 

demand for the development of effective risk management tools for these products. In 

the UK, equity-release products are commonly sold with no-negative-equity guarantee 

protection which caps the redemption amount at the lesser of the face amount of the 

loan or the sale proceeds. It therefore seems crucial for providers to have a firm 

understanding of the pricing of NNEGs, and the risk factors involved, particularly as 

house price, interest rate and mortality risks can affect NNEG pricing in differing 

degrees. We extend the current literature by considering these three risk factors in the 

pricing of NNEGs and by analyzing the corresponding effects.  

 Historical house price returns within the UK real estate market have experienced 

significant abnormal shocks, such as the subprime mortgage crisis in 2008, and since 

the providers of equity-release products assume substantial financial burdens when 

issuing NNEGs, it is extremely important for such providers to take into account the 

jump effects in house price returns when pricing these products. Despite this obvious 

requirement, this issue has not yet been dealt with in the prior literature; thus it is 

examined in the present study using an ARMA-GARCH jump model.  

 Furthermore, both interest rate and longevity risks can increase the probability of 

the home sale proceeds being less than the loan value paid out; hence, we also consider 

the CIR interest rate model and CBD mortality model to capture the respective interest 

rate and longevity risks in NNEG pricing, and then go on to develop a risk-neutral 

framework for NNEG pricing under these three risk factors. Based upon our numerical 
                                                                                                                                             
parameter frequency is low which suggests that the jump risk is less significant for NNEGs than the 
interest rate risk. 
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analyses, we find that these three factors can affect the value of NNEGs, with the 

interest rate having the greatest impact, as compared to jump and mortality risks. 

Furthermore, the house price return models are found to be the most significant factor 

determining NNEG costs; thus, when issuing NNEGs, it is crucial for issuers to be able 

to identify the house price, interest rate and mortality risks. 

 We contribute to the extant literature on NNEG pricing in several ways. Firstly, 

having identified the jump risk as an intrinsic element of house price returns within 

the UK mortgage market, we go on to propose the use of an ARMA-GARCH jump 

model. Secondly, our estimation of this model reveals that it offers a better fit than 

the various other house price return models proposed within the prior literature. 

Thirdly, we derive a risk-neutral framework for NNEG pricing which allows for the 

analysis of jump, interest rate and longevity risks. Since equity-release products are 

becoming increasingly important in globally aging societies, financial institutions 

issuing such products need to understand the impact of the different risk factors on 

NNEG costs. We argue that the findings of our study can help such providers to 

manage the inherent risks.  

 In the light of our analysis, we consider the jump effect that allows for 

time-variation in the jump intensity, but it could be extended to different jump settings 

such as the stochastic volatility in jump innovation introduced in Daal et al. (2007). 

The estimation of jump process in different settings and the corresponding risk-neutral 

valuation differ greatly, so it would be worthwhile to investigate different jump 

process in the future. 
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Table 1  Summary statistics, Q4 1952-2012 
 

Variables Mean S.D. Skewnessa,c Excess 
Kurtosisa,c 

LB Q(29) 
Stats 

Yt 0.0185 0.0252 0.5108*** 2.0034*** 338.1603*** 

Yt
2 0.0009 0.0018 4.0366*** 21.3203*** 233.8684*** 

 
Notes:  
a    The skewness and excess kurtosis statistics include a test of the null hypotheses that each is zero (the 

population values if the series is i.i.d. Normal.).  
b    The LB Q (29) statistics refer to the null hypothesis of no serial correlation with 29 lags.  
c    *** indicates significance at the 1% level.  
 
 
 
Table 2  Parameter Estimates and model fit of constant and dynamic jump models, Q4 

1952-2012 
 

Parameters 
ARMA(3,2)-GARCH(1,1) Models* 

Constant Jump   Dynamic Jump 

Coeff. S.E.    Coeff. S.E. 

Constant 0.0037 *** 0.0015 0.0045 *** 0.0010 

ϑ1 0.9050 *** 0.0279 0.9676 *** 0.0914 

ϑ2  –0.7489 ***   0.0279 –0.7628 *** 0.0510 

ϑ3 0.8748 *** 0.0286 0.8194 *** 0.0802 

ζ1 –0.1355 *** 0.0637 –0.4716 *** 0.1222 

ζ2 0.7799 *** 0.0612 0.7947 *** 0.0775 

w 1.51e-06  8.49e-07 1.50e-05 * 7.00e-06 

α 0.1366 *** 0.0271 0.1163 ** 0.0453 

β 0.6711 *** 0.0430 0.7500 *** 0.0723 

λ0 0.5361 *** 0.1030 0.0474 * 0.0112 

ρ –  – 0.6380 *** 0.1999 

ς –  – 0.2763  0.2118 

f 0.0033 ** 0.0016 0.0356 *** 0.0060 

θ 0.0142 *** 0.0017 0.0117 *** 0.0088 

AIC –5.7504 –5.7660 

BIC –5.4666 –5.4618 

Log-likelihood 661.2973 677.5093 

 
Note: * indicates significance at the 10% level; ** indicates significance at the 5% level; and *** indicates 

significance at the 1% level. 
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Table 3  Model selection, Q4 1952-2012 
 

Model Log-Likelihood AIC BIC 

Geometric Brownian Motion 543.0255 –4.5085 –4.4795 

ARMA-GARCH 644.5349 –5.4854 –5.2763 

ARMA-EGARCH 642.2203 –5.4657 –5.2333 

Merton jump  558.0304 –4.6086 –4.5361 

Double exponential jump diffusion 570.0125 –4.6381 –4.5555 

ARMA-GARCH Constant jump  661.2973 –5.7504 –5.4666 

ARMA-GARCH Dynamic jump  677.5093 –5.7660 –5.4618 

 
 
 
Table 4 Robustness check of model selection 
 

Model Log-Likelihood AIC BIC 

Panel A : Q4 1962-2012    

Geometric Brownian Motion  440.3251 –4.3833 –4.3503 

ARMA-GARCH 516.5382 –5.3527 –5.1073 

ARMA-EGARCH 482.4481 –4.9995 –4.7268 

Merton jump 444.7692 –4.3977 –4.3552 

Double exponential jump diffusion 462.3181 –4.4407 –4.5961 

Constant jump ARMA-GARCH 525.2690 –5.4715 –5.1429 

Dynamic jump ARMA-GARCH 532.0141 –5.4998 –5.1410 

Panel B : Q4 1972-2012    

Geometric Brownian Motion  350.5096 –4.3564 –4.3179 

ARMA-GARCH 403.0606 –5.2007 –4.9079 

ARMA-EGARCH 394.7050 –5.0929 –4.7676 

Merton jump 350.6187 –4.3602 –4.3200 

Double exponential jump diffusion 365.4001 –4.4525 –4.3272 

Constant jump ARMA-GARCH 425.0702 –5.5204 –5.1279 

Dynamic jump ARMA-GARCH 431.0165 –5.6279 –5.1180 

 
 
Table 5 Base assumption of parameter values for the pricing of NNEGs 
 

Parameters Notation Value 

Initial risk-free interest rate (%) r0 1.878 

Interest rate spread (%) vr 2.000 

Average delay in time (year) δ 0.500 
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Market price of mortality risk λm 0.175 

Market price of interest rate ϑr –0.0712 

Correlation between housing return and spot interest rate ρY,r 0.1595 

Amount of loan advanced at inception K 30,000 

Initial property value for different ages, x , of borrowers (H0)   

x = 60 Years  176,500 

x = 70 Years  111,000 

x = 80Years  81,000 

x = 90 Years  60,000 

 
 

Table 6 CIR model estimation reults,1952-2012 
rα  rµ  rσ  Log-likelihood 

0.0864 0.0606 0.0740 3.3363 
 
 
Table 7 NNEG costs under various house price return models 

Unit: % 

Model Gender of 
Borrowers 

Age of Borrowers (x): years 

x = 60 x = 70 x = 80 x = 90 

Geometric Brownian Motion 

Male 
3.05 

(0.019) 

2.28 

(0.012) 

1.17 

(0.007) 

0.69 

(0.003) 

Female 
4.69 

(0.018) 

3.76 

(0.011) 

1.89 

(0.008) 

1.41 

(0.002) 

ARMA-GARCH 

Male 
4.75 

(0.023) 

3.85 

(0.018) 

2.79 

(0.011) 

1.74 

(0.007) 

Female 
6.04 

(0.022) 

5.43 

(0.019) 

3.35 

(0.011) 

2.79 

(0.007) 

ARMA-EGARCH 

Male 
4.63 

(0.025) 

3.69 

(0.020) 

2.61 

(0.012) 

1.59 

(0.008) 

Female 
5.94 

(0.026) 

5.31 

(0.019) 

3.24 

(0.011) 

2.68 

(0.008) 

Merton jump model 

Male 
3.86 

(0.019) 

2.99 

(0.013) 

1.97 

(0.007) 

1.07 

(0.003) 

Female 
5.73 

(0.018) 

4.81 

(0.011) 

2.53 

(0.007) 

2.09 

(0.004) 

Double exponential jump diffusion 

Male 
3.29 

(0.019) 

2.41 

(0.013) 

1.34 

(0.006) 

0.85 

(0.004) 

Female 
5.18 

(0.017) 

4.35 

(0.012) 

2.11 

(0.006) 

1.79 

(0.003) 

ARMA-GARCH Constant jump Male 5.29 4.20 2.97 1.87 
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(0.027) (0.023) (0.017) (0.010) 

Female 
6.62 

(0.026) 

5.82 

(0.024) 

3.64 

(0.018) 

2.95 

(0.011) 

ARMA-GARCH Dynamic jump 

Male 
5.37 

(0.027) 

4.32 

(0.024) 

3.09 

(0.017) 

1.89 

(0.011) 

Female 
6.71 

(0.028) 

5.97 

(0.024) 

3.70 

(0.019) 

2.98 

(0.012) 

Note: The standard error of the simulation is shown in the parentheses. 
 
 
 
Table 8 Effects of mortality risk on NNEG costs 

Unit: % 

Model Gender of 
Borrowers 

Age of Borrowers (x years) 

x = 60 x = 70 x = 80 x = 90 

Panel A:  Deterministic Mortality Assumption 

ARMA-GARCH Constant jump model                 

Male 5.12 
(0.026) 

4.07 
(0.023) 

2.85 
(0.017) 

1.76 
(0.010) 

Female 6.40 

(0.026) 

5.65 

(0.023) 

3.48 

(0.017) 

2.81 

(0.010) 

ARMA-GARCH Dynamic jump model                  

Male 5.19 

(0.027) 

4.15 

(0.023) 

2.95 

(0.016) 

1.76 

(0.010) 
Female 6.47 

(0.027) 

5.77 

(0.024) 

3.53 

(0.018) 

2.83 

(0.011) 

Panel B:  CBD Model 

ARMA-GARCH Constant jump model                 
Male 

5.29 

(0.027) 

4.20 

(0.023) 

2.97 

(0.017) 

1.87 

(0.010) 

Female 
6.62 

(0.026) 

5.82 

(0.024) 

3.64 

(0.018) 

2.95 

(0.011) 

ARMA-GARCH Dynamic jump model                  

Male 
5.37 

(0.027) 

4.32 

(0.024) 

3.09 

(0.017) 

1.89 

(0.011) 

Female 
6.71 

(0.028) 

5.97 

(0.024) 

3.70 

(0.019) 

2.98 

(0.012) 

Note: The standard error of the simulation is shown in the parentheses. 
 
 
 
Table 9 Impact of jumps on NNEG costs with stochastic and constant interest rates 

Unit: % 

Model Gender of 
Borrowers 

Age of Borrowers (x years) 

x = 60 x = 70 x = 80 x = 90 



 42 

Panel A:  Stochastic Interest Rate 

ARMA-GARCH Constant jump model                 
Male 

5.29 

(0.027) 

4.20 

(0.023) 

2.97 

(0.017) 

1.87 

(0.010) 

Female 
6.62 

(0.026) 

5.82 

(0.024) 

3.64 

(0.018) 

2.95 

(0.011) 

ARMA-GARCH Dynamic jump model                  

Male 
5.37 

(0.027) 

4.32 

(0.024) 

3.09 

(0.017) 

1.89 

(0.011) 

Female 
6.71 

(0.028) 

5.97 

(0.024) 

3.70 

(0.019) 

2.98 

(0.012) 

Panel B:  Constant Interest Rate 

ARMA-GARCH Constant jump model                 

Male 4.50 
(0.025) 

3.60 
(0.019) 

2.63 
(0.014) 

1.71 
(0.008) 

Female 5.80 

(0.024) 

5.18 

(0.020) 

3.24 

(0.016) 

2.75 

(0.009) 

ARMA-GARCH Dynamic jump model                  

Male 4.60 

(0.026) 

3.73 

(0.019) 

2.70 

(0.015) 

1.72 

(0.009) 
Female 5.91 

(0.025) 

5.35 

(0.021) 

3.29 

(0.015) 

2.74 

(0.010) 

Note: The standard error of the simulation is shown in the parentheses. 
 
 
Table 10 Impact of risk effects on NNEG costs 

Unit: % 

Risk Factors Gender of 
Borrowers 

Age of Borrowers (x years) 

x = 60 x = 70 x = 80 x = 90 

Panel A:  ARMA-GARCH Constant Jump Model 

Jump Risk 
Male 0.54 0.35 0.18 0.13 
Female 0.58 0.39 0.29 0.16 

Interest Rate Risk 
Male 0.79 0.60 0.34 0.16 
Female 0.82 0.64 0.40 0.20 

Mortality Risk 
Male 0.17 0.13 0.12 0.11 
Female 0.22 0.17 0.16 0.14 

Panel B:  ARMA-GARCH Dynamic Jump Model 

Jump Risk 
Male 0.62 0.47 0.30 0.15 
Female 0.67 0.54 0.35 0.19 

Interest Rate Risk 
Male 0.77 0.59 0.39 0.17 
Female 0.80 0.62 0.41 0.24 

Mortality Risk 
Male 0.18 0.17 0.14 0.13 
Female 0.24 0.20 0.17 0.15 
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Figure 1  Historical quarterly returns of UK nationwide house price index 

 
Figure 2.a Estimated kappa values for male samples 
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Figure 2.b Estimated kappa values for female samples 
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Appendix  

We consider the housing price process follows an ARMA-GARCH jump model. 

Specifically, in a filtered probability space  ( )( ); ; ;
T

t
t t j t

P ∆
= ∆

Ω Φ Φ  be a complete 

probability space, the house price return process shown in Equation (1) and (5) is given 

by  

                            
2

1 1

ln( ) ,

,

t
t t t

t t
q p

t i t i t j t j t
i j

HY
H

h w h

µ ε

α ε β

−∆

− ∆ − ∆
= =

= = +

= + +∑ ∑
            (A.1) 

where 
1 1

s m

t i t i t j t j t
i j

u c Yϑ ζ ε− ∆ − ∆
= =

= + +∑ ∑  is the conditional mean function, given the time 

( )t t−∆  information t t−∆Φ ; s is the order of the autocorrelation terms; m is the order 

of the moving average terms; ϑi is the ith-order autocorrelation coefficient; ζj is the 

jth-order moving average coefficient. In addition, tε  is the total returns innovation with 

conditional variance th , given the information t t−∆Φ ; p is the order of the GARCH 

terms; q is the order of the ARCH term; αi is the ith-order ARCH coefficient; and βj is 

the jth-order GARCH coefficient. 

    To obtain the housing price dynamic under a risk-neutral measure, we aslo 

employ an equivalent martingale measure using the conditional Esscher transform 

developed by Bühlmann et al. (1996). Due to the discount housing price under the Q 

measure is a martingale, we have: 

exp
t

Q Qt t
t t t t t s t t tt t

t

BH E H E r ds H
B
-B

-B -B -B
-B

æ ö æ öæ ö÷ç ÷ç ÷÷ ç= ç F = - F ÷ç ÷÷ ç ÷ç ÷÷ç÷ è ø÷ç è øè ø
ò   (A.2) 

To incorporate the stochastic interest rate assumption, we follow Lee et al. 

(2012)’s assumption that the interest rate between time t –Δt and time t is fixed at rt –Δt , 
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but that it may vary from one band to the next. Consequently, e t tr t
t t tB B -B B

-B= . 

According to Lemma 5.2.2 in Shreve (2004), we obtain: 

             

( )

( )( )( )
( )( )( )

( ) ( )
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e
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t t t t

t t

r t r tQ P t
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 (A.3) 

Or equivalently,  

                        
( )( )( )
( )( )( )

( )
exp |

exp |
t t

P
t t t tr t

P
t t t t

E a Y
e

E a Y

i
-D

-DD

-D

) F
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F
           (A.4) 

In order for risk neutral Q to be an equivalent martingale measure, we need have  

                          ( ) ( )exp | t tr tQ
t t tE Y e -D D

-D
é ùF =ë û              (A.5) 

Because, Maheu and McCurdy (2004) has point out the conditional moments of return 

are  

                        
[ ]
[ ] ( )2 *2

|

|
t t t t

t t t t t t

E Y u

Var Y h hφ θ λ
−∆

−∆

Φ =

Φ = + =+
           (A.6) 

Thus, tY  is normally distributed with mean tu  and variance *
th , given the 

information t t−∆Φ , we obtain 
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Therefore,  

                   ( ) * *1exp | exp
2

Q
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(A.8) 
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Through the equation (A.5) and (A.8), we have 

* *1
2t t t t t tu r t a h h-D= D - -                    (A.9) 

Similarly, the characteristic function of tε  under martingale measure Q is of the 

form: 
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(A.10) 

Consequently, tε  under the measure Q become normally distributed, with mean *
t ta h  

and variance *
th , given the information t t−∆Φ . That is, given the information t t−∆Φ , 

*Q
t t t ta hε ε= −  follow normally mean 0 and variance *

th  under measure Q. Finally, the 

equation (A.1) can be rewritten as: 
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        (A.11) 

 


